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Abstract

Infant word segmentation algorithms are plau-
sible only if they are cross-linguistically valid.
They are conventionally evaluated on the
word level, tending to yield lower segmenta-
tion scores for morphologically complex lan-
guages. However, they might segment mor-
phologically complex languages in smaller
chunks e.g. morphemes. Such errors could
be useful for later linguistic analysis. In
this work in progress, a set of algorithms
segment corpora from nine typologically di-
verse languages and oversegmentation errors
are counted. The results of this study could in-
form on the segmentability of morphologically
complex languages and the generalizability of
segmentation strategies.

1 Introduction

The cross-linguistic application of unsupervised
word segmentation strategies is an open issue in
the NLP community (e.g., Harris (1955)). Sev-
eral algorithms have been proposed as plausible
strategies used by learners retrieving words from
input. Infants, when learning language, need to
break down the flow of input speech into word-
like units (Saffran et al., 1996). Since they do not
know which language(s) will be found in their en-
vironment at the beginning of development, they
would be better off by using cross-linguistically
robust strategies, offering useful insights to learn
every linguistic structure.

Previous work assessed the applicability of
segmentation algorithms across languages, typ-
ically concluding that morphologically complex
languages tend to yield lower segmentation results
than simpler ones (Johnson, 2008; Fourtassi et al.,
2013; Loukatou et al., 2018)). Evaluation was
conventionally done based on orthographic word
boundaries. However, segmenting smaller mean-
ingful chunks than words, such as morphemes, is

lang % over % correct % total
Inuktitut 51 22 73
Chintang 44 24 68
Turkish 39 26 65
Yucatec 31 27 58
Russian 46 19 65
Sesotho 44 25 69

Indonesian 42 25 67
Japanese 37 25 62
English 6 51 57

Table 1: Percentage of average oversegmented, correct
word tokens and their sum, per language (by decreasing
complexity).

.

reasonable from both a computational and an ac-
quisition point of view: Languages with elaborate
morphological structure often feature multimor-
phemic words, and algorithms might break words
up into these component morphemes, treating fre-
quent morphemes as words. Finding out mor-
phemes can also be useful for later linguistic anal-
ysis, especially for languages with rich morpho-
logical systems (Phillips and Pearl, 2014), and in-
fants seem to recognize functional morphemes of
their language early on (Marquis and Shi, 2015),
using them as cues to bootstrap segmentation.

Thus, a “useful” error in segmentation could be
oversegmentation (Gervain and Erra, 2012; John-
son, 2008), the percentage of word tokens returned
as two or more subparts in the output. We predict
that cases of oversegmentation would be encoun-
tered more often in languages with complex mor-
phology. Also, an algorithm generating reasonable
errors like oversegmentation would be more use-
ful for language learning, thus more plausible as a
strategy of infant word segmentation. It could also
account for previously documented low scores in
morphologically complex languages.



algo % over % correct % total
Base0 0 12 12
Base1 87 0 87
DiBS 3 31 34
FTPa 25 33 58
FTPr 41 34 75
AG 47 46 93

PUDDLE 59 31 90

Table 2: Percentage of average oversegmented, correct
word tokens per algorithm and their sum. Languages
are ordered by decreasing complexity.

2 Methods

We used the ACQDIV database (Moran et al.,
2016) of typologically diverse languages, with
transcriptions of infant-directed and -surrounding
speech recordings, from Inuktitut (Allen, 1996),
Chintang (Stoll et al., 2015), Turkish (Küntay
et al., Unpublished), Yucatec (Pfeiler, 2003), Rus-
sian (Stoll and Meyer, 2008), Sesotho (Demuth,
1992), Indonesian (Gil and Tadmor, 2007) and
Japanese (Miyata and Nisisawa, 2010; Nisisawa
and Miyata, 2010). In order to compare with a
morphologically simple language, we included the
English Bernstein corpus (MacWhinney, 2000).
We used four metrics to measure morphological
complexity: the order of verb synthesis (Stoll and
Bickel, 2013), the Moving Average Type-token
Ratio (500-word window) (Kettunen, 2014), and
two measurements of compression-based com-
plexity (Szmrecsanyi, 2016).1 Metrics were nor-
malized (0=least complex, 1=most complex) and
an average score of the four was attributed to each
language. The results, in order of decreasing com-
plexity, are: Inuktitut 1, Chintang 0.56, Turkish
0.44, Yucatec 0.42, Russian 0.41, Sesotho 0.31,
Indonesian 0.28, Japanese 0.14, English 0.02.

A set of plausible segmentation strategies was
used (Bernard et al., 2018). Two baselines were
Base0, treating each sentence as a word, and
Base1, treating each phoneme as a word. DiBS2

(Daland, 2009) implements the idea that unit se-
quences often spanning phrase boundaries prob-
ably span word breaks. FTP3 (Saksida et al.,
2017) measures transitional probabilities between

11st: the size of compressed corpus (gzip) divided by the
size of raw corpus. 2nd: systematic distortion of morpholog-
ical regularities, so as to estimate the role of morphological
information in the corpus. Each word type was replaced with
a randomly chosen number. The size of the distorted com-
pressed corpus was then divided by the size of the originally
compressed corpus.

2Diphone Based Segmentation algorithm
3Forward Transitional Probabilities algorithm

phonemes and cuts depending on a local thresh-
old (relative, FTPr) or a global threshold (absolute,
FTPa). Adaptor Grammar (AG) (Johnson, 2008)
assumes that learners create a lexicon of minimal,
recombinable units and use it to segment the in-
put. AG implements the Pitman-Yor process, a
stochastic process which reuses frequently occur-
ring rules to build a lexicon. Finally, PUDDLE4

(Monaghan and Christiansen, 2010) is incremen-
tal, and learners insert in a lexicon an utterance
that cannot be broken down further, and use its
entries to find subparts in subsequent utterances.
Before segmentation, spaces between words were
removed, leaving the input parsed into phonemes,
with utterance boundaries preserved.

3 Results and Discussion

Table 1 gives the average percentage of correct,
oversegmented words and their sum for each lan-
guage. Table 2 shows the average proportion
of correct, oversegmented words and their sum
for each algorithm. In general, large overseg-
mentation scores belong to languages with com-
plex morphology (51% for Inuktitut, and 6 % for
English). The findings show a possible relation
between morphological complexity and overseg-
mentation, which could not be entirely explained
by our complexity metric. The cross-linguistic
performance difference ranged from 19% to 51%,
but when considering oversegmented words as
correct, the difference decreased (57% to 73%).
The AG and PUDDLE algorithms segment after
building a lexicon, and generate words partially
based on their frequency. They largely overseg-
mented; since they find repeating units, they may
have segmented out morphemes instead of words.

Measuring reasonable errors could thus shed
light on the segmentability of morphologically
complex languages and the cross-linguistic appli-
cability of infant word segmentation strategies.
Further research might include over- but also un-
dersegmentation errors, when two or more words
in the input returned as a single unit in the output.
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