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Introduction

In our on-going work, we are addressing the prob-
lem of identifying cognates across lexica of any
pair of languages. In particular, we assume that
the languages of interest are low-resource to the
extent that no training data whatsoever, even in
closely related languages, are available for the
task. Instead, we are investigating the perfor-
mance of language-independent transfer learning
approaches utilising training data from a com-
pletely unrelated, higher-resource language fam-
ily. Our results so far suggest that a Siamese con-
volutional neural network generalises more effec-
tively across language families than baselines.

Cognate identification is a core task in the com-
parative method, a collection of techniques used
in historical linguistics, a field closely tied with
linguistic typology (Shields, 2011). Cognate in-
formation is also useful for applications such as
machine translation (Grönroos et al., 2018). In ad-
dition, knowledge of cognates is useful for second-
language learning (Beinborn et al., 2014).

Cognate identification

In cognate identification, we are essentially given
two string sets X = {x1, . . . , xn} and Y =
{y1, . . . , ym}. The task is to extract those pairs
(x, y) in relation R:

R = {(x, y) ∈ X × Y | x is cognate with y }

Each element x ∈ X and y ∈ Y is a string over
alphabets Σx and Σy respectively. The alphabet
sets do not necessarily overlap.

Table 1 illustrates the difficulty of cognate iden-
tification. As can be seen, some cognates are
straightforward with a similar form and meaning
(e.g. notte - noche). On the other hand, there is
large variation in the degree of similarity in terms
of both form and meaning. However, common to

Word A Word B Meanings
it: notte es: noche ’night’
fi: huvittava et: huvitav ’amusing’; ’interesting’
en: attend fr: attendre ’attend’; ’wait’
en: oath sv: ed ’oath’
fi: pöytä sv: bord ’table’
en: bite fr: fendre ’bite’; ’split’

Table 1: Examples of cognates with varying degree of simi-
larity in form and meaning.

all of these examples is that they exhibit regular
sound correspondences, i.e. word segments reg-
ularly occurring in similar positions and contexts
(List, 2013; Kondrak, 2012), such as oa-e and th-d
in English-Swedish cognates. Therefore, cognate
identification should rely on the identification of
such cross-lingual correspondences (i.e. pairs of
single characters or substrings).

Most previous work attempts to design such a
string similarity metric that would tend to assign
a higher score to cognate than unrelated words.
Common approaches include extensions of the tra-
ditional Levenshtein distance (Levenshtein, 1966)
that either assign weights to pairs of symbols
according to their phonetic properties (e.g. List,
2013; Kondrak, 2000), or that learn such weights
from example cognates (Ciobanu and Dinu, 2014;
Gomes and Pereira Lopes, 2011). McCoy and
Frank (2018) use weights based on character em-
beddings.

In contrast to much of previous work, we make
no strict assumptions about the degree of sim-
ilarity in form or meaning that any two cog-
nates should exhibit. Instead, following Rama
(2016) and Jäger (2014), we treat regular corre-
spondences as the main driving factor in the cog-
nate relation and attempt to capture these in a com-
pletely data-driven manner. We aim to contribute
to this line of research by considering the ability of
our models to generalise across language families.



Models and experiments

In our experiments, we have trained our models
with an etymological database of Indo-European
languages (De Melo, 2014), and tested their per-
formance on combinations of three lexica from
Sami languages of the Uralic family. We have ex-
perimented with two similarity learning models,
a Siamese convolutional neural network (S-CNN)
based on Rama (2016) and a support vector ma-
chine (SVM) based on Hauer and Kondrak (2011),
compared with a Levenshtein-distance (LD) base-
line (Levenshtein, 1966). In addition, we have
experimented with fine-tuning the S-CNN model
in order to quantify the benefit of having small
amounts of target-language training data.

The Levenshtein distance between two strings
is the minimum number of insertions, deletions,
and substitutions needed to transform one string
to another. It is straightforward to turn this into a
similarity metric. For the SVM, word pairs are en-
coded into vectors of the following features: Lev-
enshtein distance, number of common bigrams,
prefix length, lengths of both words, and the abso-
lute difference between the lengths. The S-CNN is
a two-input version of a convolutional neural net-
work, where input words are encoded into matri-
ces of concatenated one-hot vectors representing
characters. As shown in Figure 1, the network cre-
ates a merged representation of a word pair, to be
classified as cognate or unrelated.

Figure 2 shows a precision-recall curve for
each model, including both a fine-tuned (with 500
target-language training pairs) and unadapted S-
CNN. As expected, the fine-tuned S-CNN outper-
forms the other models. Interestingly, even the un-
adapted S-CNN simply relying on Indo-European
training data outperforms the SVM and LD. This
suggests that the S-CNN is able to more effectively
capture such aspects of the cognateness relation
that carry over across language families.

Work in progress

We are currently investigating approaches to im-
prove target-family performance with unsuper-
vised methods of domain adaptation. One of
our lines of work is to use an adversarial ap-
proach to making target-family word pair repre-
sentations more similar to source-family represen-
tations, similarly to the method of Tzeng et al.
(2017) intended for domain adaptation of images.
Another way to extend the S-CNN model is to use
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Figure 1: Architecture of the S-CNN. Column vectors
in input matrices represent one-hot-encoded characters.
The same filter W is convolved with both inputs.
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Figure 2: Precision-recall for Sami test set.

unsupervised multilingual character embeddings
(Granroth-Wilding and Toivonen, 2019), trained
with small corpora from the target languages. This
could be a way to make characters across lan-
guages more comparable to each other, thus tack-
ling the issue that orthographies are often not di-
rectly comparable.

In addition to unsupervised methods, we also
intend to compare our data-driven approaches with
more linguistically-informed ones, in order to as-
sess the benefit of such information. For exam-
ple, our work could benefit from the use of univer-
sal phonetic encodings of words instead of ortho-
graphic forms.

Although we have thus far specifically focused
on the problem of cognate identification, we be-
lieve that these methods could be extended to the
study of other typological features of language and
the automatic inference of such features. Lan-
guage typology could also provide a means to in-
terpret the representations of our S-CNN model.
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